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NPPs play an important role in energy security and the reduction of airborne pollutants. As part of the DOE 
Light Water Reactor Sustainability Program, we are developing models to characterize the reliability and 
safety of NPP piping subsystems. Subsystems are represented as statistical flowgraphs, with nodes repre-
senting states of partial or complete failure, and edges representing probability distributions for transitions 
between states. Transitions are driven by processes based on the material properties of the pipes, and the 
physical and chemical dynamics of the fluid being carried. We describe a model for predicting cracking, 
leakage, and rupture of pipes, based on empirical failure data and stochastic differential equations for crack 
growth.

Nuclear power plants (NPP) produce about 20% of the total electric 
power used in the US, and nearly three-quarters of the power 

produced by non-carbon-emitting sources. Because of forecasted power 
demands and concern over carbon dioxide emissions, the Department 
of Energy (DOE) is funding research both on next-generation reactor 
designs [1] and on extending existing NPP operating life [2]. A key 
part of the DOE reactor sustainability program is Risk-Informed Safety 
Margin Characterization (RISMC), which requires statistical models for 
characterizing the reliability and safety of NPP subsystems.

We are working with collaborators at the INL, PNNL, and Electric 
Power Research Institute (EPRI) on modeling reliability in passive 
components of NPPs, specifically certain types of piping subsystems [3]. 
NPPs may have up to 40 miles of piping in various subsystems; many 
of these are safety-critical, such as reactor coolant piping and pipes 
supplying fuel to backup diesel generators. Pipes are subject to many 
failure mechanisms related to pressure, flow rate, and corrosion, which 
lead to cracking in the pipe walls, leakage, and ultimately rupture.

Figure 1 shows a Markov process model for piping 

failure [4]. From a state in which there is no detectable flaw (N) the 
system may evolve to a state D in which a non-visible flaw has been 
detected (e.g., by radiography), which may, in turn, lead to a visible leak. 
The flaw or leak states may lead to rupture of the pipe (state R), which 
is considered the failure state. In the flaw or leak states a repair can be 
done, restoring the system to its initial state. The process is represented 
as a statistical flowgraph [5], in which the graph edges are labeled with 
information specifying the probability distribution of time spent in the 
origin state before making a transition to the destination state. In this 
case, consistent with the assumptions of a Markov process, edge labels 
are constant transition rates, where, for example, the probability density 
of the waiting time T in state N prior to flaw detection is φexp(–φt).

Statistical flowgraphs are solved for quantities of interest by algebraic 
operations on integral transforms of the waiting-time distributions 
(e.g., Laplace or Fourier transforms) and analytical or numerical 
inversion of the resultant transforms. This yields results such as 
the probability distribution of the time for the first passage N→R.

Where there is epistemic uncertainty regarding parameters such as φ, a 
Bayesian analysis may be performed by iterating the flowgraph solution 
over the joint posterior distribution of the parameters. The posterior is 
developed by assigning prior distributions to the parameters, which are 
then updated using observed data on transitions. This process allows 
quantification of the uncertainty in predictions, taking into account 
all parameter uncertainties; Fig. 2 shows an example, a plot of the 
posterior hazard rate for ruptures in a certain piping subsystem, with 
bounds indicating the 95% credible interval (the hazard rate h(t) is the 

Fig. 1. Flowgraph model for pipe 
rupture.
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Fig. 2. Log plot of the posterior hazard 
rate for pipe rupture; 95% credible 
interval is dashed.

Fig. 3. Sample paths for crack growth 
given by numerical solutions of the 
SDE.

instantaneous failure rate at time t).

We have validated the Bayesian 
flowgraph methodology in the 
RISMC context, using the process 
in Fig. 1 as a benchmark [6]. The 
statistical flowgraph methodology 
also allows us to dispense with 
the restrictive assumption of 
constant failure rates, and model 
piping failures as semi-Markov 
processes (SMP) [7]. In an SMP, the 
waiting time in a given state may 

have an arbitrary distribution–for example, Weibull or lognormal, 
resulting in a much more flexible class of models.

 RISMC modeling work to date has relied on field and experimental 
data, combined with expert judgment, to empirically derive probability 

distributions for waiting times in models 
such as Fig. 1. Thinking of this as a 
macro-model, micro-models for individual 
transitions, based on an understanding 
of the physical mechanisms involved, 
would also be valuable. For example, 
the D→L transition is a process of 
crack growth in the wall of the pipe, for 
which physical models and experimental 
data exist. The process of crack 
growth is stochastic, based on natural 
variation in material properties, applied 
stress, chemical environment, etc. 
Various methods exist for introducing 
randomness into deterministic 
physical models [8]; we are exploring 

stochastic differential equations (SDE) for this purpose. As a simple 
example, we might model the time-dependent crack length a(t), 
using a log-linear model for the differential of crack length, with 
the SDE log da = log γ + ½ log a(t) + dW(t), where γ is a material 
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constant and W(t) is a Wiener process (Brownian motion) [9].

Figure 3 shows sample paths for crack growth generated by numerically 
solving this SDE [10]. The horizontal dashed line represents a critical 
crack length that will cause a leak. The histogram inset on the abscissa 
summarizes the time to reach the critical length based on a sample of 
1,000 paths; the dotted line over the histogram is an inverse Gaussian 
probability density fitted to the sample data. The inverse Gaussian is 
plausible here since it is the first passage distribution for Brownian 
motion. This density can be used in the flowgraph macro-model as the 
waiting time density for the D→L transition. This is a simple notional 
example—much work remains to be done to develop models for various 
types of crack growth, and calibrate them using experimental data.


